Biosequence Algorithms, Spring 2005

Lecture 4. Set Matching and
Aho-Corasick Algorithm

Pekka Kilpelainen

University of Kuopio

Department of Computer Science

BSA Lecture 4: Aho-Corasick matching — p.1/24

http://www.cs.uku.fi/~kilpelai/

Exact Set Matching Problem

In the exact set matching problem we locate occurrences
of any patternofaset P = {P;,..., P}, intarget T'|1...m|

Let n = >_F | | Pj|. Exact set matching can be solved in time
O(|Pi|+m+---+ |P|+m)=0(n+ km)
by applying any linear-time exact matching k& times

Aho-Corasick algorithm (AC) is a classic solution to
exact set matching. It works in time O(n + m + z), where z
IS number of pattern occurrences in T’

(Main reference here [Aho and Corasick, 1975])

AC Is based on a refinement of a keyword tree

BSA Lecture 4: Aho-Corasick matching — p.2/24

Keyword Trees

A keyword tree (or a trie) for a set of patterns P is a
rooted tree K such that

1. each edge of K is labeled by a character
2. any two edges out of a node have different labels

Define the label of a node v as the concatenation of edge
labels on the path from the root to v, and denote it by £L(v)

3. for each P € P there’s a node v with £(v) = P, and
4. the label £(v) of any leaf v equals some P € P

BSA Lecture 4: Aho-Corasick matching — p.3/24

Example of a Keyword Tree

A keyword tree for P = {he, she, his, hers}:

A keyword tree is an efficient implementation of a
dictionary of strings

BSA Lecture 4: Aho-Corasick matching — p.4/24

Keyword Tree: Construction

Construction for P = { Py, ..., P}

Begin with a root node only;
Insert each pattern P;, one after the other, as follows:

Starting at the root, follow the path labeled by chars of P;

If the path ends before P;, continue it by adding new
edges and nodes for the remaining characters of P,

Store identifier ¢ of P; at the terminal node of the path

This takes clearly O(|Py| + - -- + |Px|) = O(n) time

BSA Lecture 4: Aho-Corasick matching — p.5/24

Keyword Tree: Lookup

Lookup of a string P: Starting at root, follow the path
labeled by characters of P as long as possible;

If the path leads to a node with an identifier, P is a
keyword in the dictionary

If the path terminates before P, the string is not in the
dictionary

Takes clearly O(|P|) time — An efficient look-up method!

Naive application to pattern matching would lead to ©(nm)
time

Next we extend a keyword tree into an automaton,
to support linear-time matching

BSA Lecture 4: Aho-Corasick matching — p.6/24

Aho-Corasick Automaton (1)

States: nodes of the keyword tree
Initial state: 0 = the root

Actions are determined by three functions:

1. the goto function ¢g(q, a) gives the state entered from
current state ¢ by matching target char a

if edge (q,v) is labeled by a, then ¢g(q,a) = v;

g(0,a) = 0 for each « that does not label an edge

out of the root
~» the automaton stays at the initial state while
scanning non-matching characters

Otherwise ¢g(q,a) = ()

BSA Lecture 4: Aho-Corasick matching — p.7/24

Aho-Corasick Automaton (2)

2. the failure function f(q) for ¢ # 0 gives the state
entered at a mismatch

f(q) is the node labeled by the longest proper suffix
w of L(q) s.t. w is a prefix of some pattern

— a fall transition does not miss any potential
occurrences

NB: f(q) is always defined, since £(0) =¢eis a
prefix of any pattern

3. the output function out(q) gives the set of patterns
recognized when entering state ¢

BSA Lecture 4: Aho-Corasick matching — p.8/24

Example of an AC Automaton

AN N \

—_—

. ~ éh%\@e%\@ {he, she} \\/‘
N //

Dashed arrows are fail transitions

BSA Lecture 4: Aho-Corasick matching — p.9/24

AC Search of Target T'[1...m]

q := 0; // Initial state (root)
for 12 :=1to m do
while g(q, T[i]) = 0 do
q = f(q); Il follow a fail
q == g(q,Ti]); Il follow a goto
if out(q) # 0 then print 4, out(q);
endfor,

Example:

Search text “ushers” with the preceding automaton

BSA Lecture 4: Aho-Corasick matching — p.10/24

Complexity of AC Search

Theorem Searching target 7'[1...m] with an AC

automaton takes time O(m + z), where z is the number of
pattern occurrences

Proof. For each target character, the automaton performs 0
or more fail transitions, followed by a goto.

Each goto either stays at the root, or increases the depth
of ¢ by 1 = the depth of ¢ Is increased < m times

Each fail moves ¢ closer to the root
= the total number of fail transitions is < m

The z occurrences can be reported in z x O(1) = O(z) time
(say, as pattern identifiers and start positions of
occurrences) []

BSA Lecture 4: Aho-Corasick matching — p.11/24

Constructing an AC Automaton

The AC automaton can be constructed in two phases

Phase I:
1. Construct the keyword tree for P

for each P € P added to the tree, set out(v) := { P}
for the node v labeled by P

2. complete the goto function for the root by setting
9(0,a) :=0

for each a € X that doesn’t label an edge out of the root

If the alphabet X is fixed, Phase | takes time O(n)

BSA Lecture 4: Aho-Corasick matching — p.12/24

Result of Phase |

#h, s}

(e B

@ag@keo%@ rers
S (6) @ fhis}

=(a)==(5) (she}

Phase Il of the AC Construction

Q@ := emptyQueue();
for a € X do
if ¢(0,a) = q # 0 then
f(q) := 0; enqueue(q, Q);
while not ISEmpty((Q) do
r:= dequeue(Q);
for a € X do
if g(r,a) = u # () then
enqueue(u, Q); v := f(r);
while g(v,a) = 0 do v := f(v); Il (*)
f(u) = g(v,a);
out(u) := out(u) Uout(f(u));

What does this do?

BSA Lecture 4: Aho-Corasick matching — p.14/24

Explanation of Phase Il

Functions fail and output are computed for the nodes of the
trie in a breadth-first order

~» nodes closer to the root have already been processed

Consider nodes r and u = g(r, a), that is, r is the parent of
uwand L(u) = L(r)a

Now what should f(u) be?
A: The deepest node labeled by a proper suffix of L(u).

The executions of line (*) find this, by locating the deepest
node v s.t. L(v) is a proper suffix of £L(r) and g(v, a)
(= f(u)) is defined.

(Notice that v and g(v, a) may both be the root.)

BSA Lecture 4: Aho-Corasick matching — p.15/24

Completing the Output Functions

What about
out(u) := out(u) Uout(f(u)); ?

This is done because the patterns recognized at f(u) (if

any), and only those, are proper suffixes of £(u), and shall
thus be recognized at state u also.

BSA Lecture 4: Aho-Corasick matching — p.16/24

Complexity of the AC Construction

Phase Il can be implemented to run in time O(n), too:

The breadth-first traversal alone takes time proportional to
the size of the tree, which is O(n);

OK: ...

Is there also an O(n) bound for the number of times that
the f transitions are followed (on line (*))?

A: Yes! See next

BSA Lecture 4: Aho-Corasick matching — p.17/24

AC Construction: Number of fail
transitions

Consider the nodes uq, ..., u; on a path created by
entering a pattern a; ... q; to the tree, and the depth of their
f nodes, denoted by df (uy), ..., df(u;) (all > 0)

Now df (u;+1) < df (u;) + 1 = the df values increase at most
[times along the path. When locating f(u;;1), each
execution of line (*) takes v closer to the root, and thus
makes value of df (u; 1) smaller than df(u;) + 1 by one at
least

~ line (*) is executed in total < [times (for a pattern of
length)

~ line (*) iIs executed in total, for all patterns, < n times

BSA Lecture 4: Aho-Corasick matching — p.18/24

AC Construction: Unions of output
functions

Is it costly to perform
out(u) := out(u) Uout(f(u)); ?

No: Before the assignment, out(u) = () or out(u) = {L(u)}.
Any patterns in out(f(u)) are shorter than £(u)
= the sets are disjoint

— Qutput sets can be implemented as linked lists, and
united in constant time

BSA Lecture 4: Aho-Corasick matching — p.19/24

Biological Applications

1. Matching against a library of known patterns

A Sequence-tagged-site (STS) Is, roughly, a DNA string
of 200—300 bases whose left and right ends occur only
once in the entire genome

ESTs (expressed sequence tags) are STSs that participate
In gene expression, and thus belong to genes

Hundreds of thousands of STSs and tens of thousands of
ESTs (by mid-90’s) are stored in databases, and used to
compare against new DNA sequences

~ Ability to search for occurrences of patterns in
time that is independent of their number is very useful

BSA Lecture 4: Aho-Corasick matching — p.20/24

2. Matching with Wild Cards

Let ¢ be a wild card that matches any single character

For example, abg¢c ¢ occurs at positions 2 and 7 of
1234567890123
xabvccababcax

A transcription factor is a protein that binds to specific
locations of DNA and regulates its transcription to RNA

Many transcription factors are separated into families
characterized by substrings with wild cards

Example: Transcription factor Zinc Finger has signature

CooC oppopdodpoPpPPoH po H

(C = cysteine, H = histidine; amino acids)

BSA Lecture 4: Aho-Corasick matching — p.21/24

Matching with Wild Cards (2)

If the number of wild cards is bounded by a constant,
patterns with wild-cards can be matched in linear time, by
counting occurrences of non-wild-card substrings of P:

Let P ={P,..., P} bethe substrings of P separated by
wild-cards, and let {4, ..., [, be their end positions in P

Preprocess: Build an AC automaton for P;
Initiate occurrence counts: for ¢ := 1 to |T'| do Ci] := 0;

Search target 1" with the AC automaton

When pattern P; is found to end at position 7 > [, of T',
increment C'|i — [; 4+ 1] by one;

Any i with C[i] = k is the start position of an occurrence

BSA Lecture 4: Aho-Corasick matching — p.22/24

Example

Let P = pATCoppTCHATC
Then P = {ATC, TC,ATC} with [y =4, [, =8 and I3 = 12

c G
>@%@ {4, 12, 8}

T
\@%g @
Search on

| : 12345678901234. ..
T: ACGATCTCTCGATC. ..

~ C[1] = C[7] = C[11] = 1 and C|3] = 3 (~ occurrence)

BSA Lecture 4: Aho-Corasick matching — p.23/24

Complexity of AC Wild-Card
Matching

Let |P|=nand |T| =m
Preprocessing: O(n +m) (« S.F_, |P| < n)
Search: O(m + z), where z is the number of occurrences

Each occurrence increments a cell of C' by one, and each
cell C[1],...,C|m]| is incremented at most k times
= 2z < km (= O(m) if k is bounded by a constant)

We have derived the following result:

Theorem 3.5.1 If the number of wild-cards in pattern P is
bounded by a constant, exact matching with wild-cards can

be performed in time O(|P| + |T) O

BSA Lecture 4: Aho-Corasick matching — p.24/24

	Exact Set Matching Problem
	Keyword Trees
	Example of a Keyword Tree
	Keyword Tree: Construction
	Keyword Tree: Lookup
	Aho-Corasick Automaton (1)
	Aho-Corasick Automaton (2)
	Example of an AC Automaton
	AC Search of Target $T[1ldots m]$
	Complexity of AC Search
	Constructing an AC Automaton
	Result of Phase I
	Phase II of the AC Construction
	Explanation of Phase~II
	Completing the Output Functions
	Complexity of the AC Construction
	AC Construction: Number of fail transitions
	AC Construction: Unions of output functions
	Biological Applications
	2. Matching with Wild Cards
	Matching with Wild Cards (2)
	Example
	Complexity of AC Wild-Card Matching

